Thursday, September 22, 2011

Conguratulation for you guys ^^

19 september 2011??kenapa yah dengan tanggal 19 september 2011?
ada yang tahu??
benerrrr bangettttt....di hari itu jurusan Teknik Kimia Industri baruuuuu aja melaksanakan wisuda untuk angkatan 2007.
seneng ga sih denger nya??
pasti seneng yah, sekarang kita udah punya alumni..^^ salah satu hal yang paling kita tunggu.

apa sih keuntungan punya alumni?kenapa harus seneng??
karena dengan adanya alumni, setidaknya kita punya tempat bertanya, atau mencari informasi tentang keteknikimiaan, kareana secara tidak langsung dengan adanya kelulusan mereka, berarti segala sesuatunya baik itu TA (tugas akhir), KL (kerja lapangan) dan sebagainya yang telah mereka susun itu sudah benar, atau bahasa lazimnya sudah lulus uji.
Dan kita bisa belajar dari mereka semua ^^

untuk wisuda tanggal 19 september 2011, jurusan Teknik Kimia Industri telah mewisuda 7 mahasiswanya, dan yang lain akan menyusul di wisuda tahun besok loh..doain yah ^^


ada yang tahu ga siapa sih 7 orang itu???
ini dia mereka :
Ayu Indah Lestari 1507022
Yusuf Aferi 1507008
Rijal Hakiki 1607003
Herlangga Hardipraja 1507016
Wahyuni 1507005
Adyanti Rahmaniar 1607004
Imaniar Putriana 1607008


tapi jangan salah loh....dari Teknik Kimia Industri ada yang CUMLAUDE ^^
diaaa itu....HERLANGGA HARDIPRAJA ^^ (chukae ^^)

(gambar menysul yah ^^)





Pesan dan Kesan:
KESAN
Herlangga: 
" wisudanya kurang terasa sakral, tempatnya adem tapi acaranya ada yang kurang pas ..walau secara keseluruhan udah bagus, yang ga enak yang ga dapet makan siang..hehe "


PESAN:
Herlangga : " semoga wisudawan dari tekim lebih banyak yang cumlaude pada tahun ini " 


CONGURATULATION GUYS ^^
you are the first , and i hope we are the next aminnn
very proud of you all ^^

Wednesday, September 21, 2011

5 Alasan Komputer Harus di Shut Down Terlebih Dahulu

Setiap kali kita menggunakan komputer, setelah selesai harus melakukan proses shut Down. Nah, biasanya kita kadang suka males nungguin proses shutdown yang agak lama, jadi langsung kita cabut aja dari stop kontaknya Nah bagi yang pernah kayak gitu mending baca ini dulu deh..

Bila kita terlalu sering mematikan komputer dengan cara mematikan hubungan listrik ke komputer
tanpa melakukan proses Shut Down, ada beberapa kendala yang akan terjadi :

1. Pada saat proses shutdown komputer akan meregistrasi ulang komponen komputer yang terpakai (digunakan) dan software serta data yang dipakai atau yang di delete. Kalau kita mematikan komputer secara langsung, maka komponen atau software serta data yang digunakan tidak dapat disimpan kedalam registrasi, sehingga bila terjadi masalah pada komputer maka komputer tidak dapat mengadakan system recofery berdasarkan tanggal atau waktu yang di tetapkan.

2. Pada saat proses shutdown, processor memberikan perintah kepada bios untuk menghentikan segala pekerjaan2 komponen peralatan, sehingga arus atau daya yang terpakai diputus secara normal, tapi kalau kita mematikan langsung maka komponen komputer secara mendadak mati tanpa pemutusan arus secara normal sehingga lama kelamaan akan menimbulkan kerusakan pada komponen komputer.

3. Pada saat proses shutdown fan komputer akan bekerja duakali lebih cepat untuk proses pendinginan processor, kalau kita mematikan komputer secara langsung, maka pendinginan processor tidak bekerja secara normal maka lama-kelamaan processor bisa rusak.

4. Pada saat proses shutdown system memory akan dikosongkan, sehingga pada saat komputer dipakai lagi maka memory sudah benar-benar dalam keadaan refresh, kalau kita mematikan komputer secara langsung maka besar kemungkinan memory bisa rusak.

5. Pada saat proses shutdown hardisk bekerja untuk menyimpan data yang diperintahkan processor serta menyalin data komponen serta software kedalam registrasi komputer, kemudian haed hardisk akan kembali keposisi awal (keposisi tidak membaca hardisk), kalau kita mematikan komputer secara langsung maka selain data komponen dan software tidak tersimpan pada registry, juga posisi head hardisk berada di tengah2 silinder hardisk, sehingga pada saat dihidupkan kembali head komputer dapat merusak silinder hardisk sehingga terjadi Band sector hardisk, lama kelamaan akan menyebabkan hardisk rusak.

Itulah sebabnya mengapa pada saat proses shutdown komputer lama untuk mati. Oleh sebab itu hendaknya jika mematikan komputer harus melakukan proses shutdown bila kita tidak ingin ada masalah kerusakan pada system komputer kita baik softwarenya maupun hardwarenya. 

sumber
- http://www.kaskus.us/showthread.php?t=10489228
- infohargaterbaru.blogspot.com

BAHAYA DETERGEN

(Tinjauan pada suatu Instalasi Pengolahan Air).
Pemakaian bahan pembersih sintesis yang dikenal dengan deterjen makin marak di masyarakat luas. Dalam deterjen terkandung komponen utamanya, yaitu surfaktan, baik bersifat kationik, anionik maupun non-ionik. Dengan makin luasnya pemakaian surfaktan sebagai bahan utama pembersih maka risiko bagi kesehatan dan lingkungan pun makin rentan. Teknik pengolahan detergen dapat dilakukan menggunakan berbagai macam teknik misalnya biologi yaitu dengan bantuan bakteri, koagulasi-flokulasi-flotasi, adsorpsi karbon aktif, lumpur aktif, khlorinasi dan teknik representatif lainnya tergantung dari efektifitas kebutuhan dan efisiensi financial. Detergen merupakan suatu derivatik zat organik sehingga akumulasinya menyebabkan meningkatnya COD dan BOD dan angka permanganat sehingga dalam pengolahannya sangat cocok menggunakan teknik biologi. Dibandingkan dengan proses lumpur aktif konvensional, oxidation ditch mempunyai beberapa kelebihan, yaitu efisiensi penurunan BOD dapat mencapai 85%-90% (dibandingkan 80%-85%) dan lumpur yang dihasilkan lebih sedikit. Selain efisiensi yang lebih tinggi (90%-95%), kontak stabilisasi mempunyai kelebihan yang lain, yaitu waktu detensi hidrolis total lebih pendek (4-6 jam). Dengan tangki septic-filter up flow yang berisi pecahan batu bata sebagai media hidup mikroba sanggup mereduksi kandungan Metylene Blue Active Surfactan atau MBAS (untuk mendeteksi kandungan detergen) hingga mencapai efesiensi 87,93 persen. Cara koagulasi umumnya berhasil menurunkan kadar bahan organik (COD,BOD) sebanyak, 40-70 %. Zeolit dapat menurunkan COD 10-40%, dan karbon aktif dapat menurunkan COD 10-60 %. Detergen mempunyai ikatan – ikatan organik. Proses khlorinasi akan memecah ikatan tersebut membentuk garam ammonium khlorida meskipun akan menghasilkan haloform dan trihalomethans jika zat organiknya berlebih.
Jumlah industri untuk menghasilkan berbagai macam produk, guna memenuhi kebutuhan manusia pada saat ini semakin meningkat. Selain menghasilkan produk yang dapat digunakan oleh manusia, kegiatan produksi ini juga menghasilkan produk lain yang belum begitu banyak dimanfatkan yaitu limbah. Seiring dengan peningkatan industri ini, juga akan terjadi peningkatan jumlah limbah.
Limbah yang dihasilkan dapat memberikan dampak negatif terhadap sumber daya alam dan lingkungan, seperti gangguan pencemaran alam dan pengurasan sumber daya alam, yang nantinya dapat menurunkan kualitas lingkungan antara lain pencemaran tanah, air, dan udara jika limbah tersebut tidak diolah terlebih dahulu. Bermacam limbah industri yang dapat mencemari lingkungan antara lain : limbah industri tekstil, limbah agroindustri (limbah kelapa sawit, limbah industri karet remah dan lateks pekat, limbah industri tapioka, dan limbah pabrik pulp dan kertas), limbah industri farmasi, dan lain-lain. Selain kegiatan industri, diperkotaan limbah juga dihasilkan oleh hotel, rumah sakit dan rumah tangga. Bentuk limbah yang dihasilkan oleh komponen kegiatan yang disebut di atas adalah limbah padat dan limbah cair.
Menurut Sugiharto (1987) air limbah adalah kotoran yang berasal dari masyarakat dan rumah tangga dan juga berasal dari industri, air tanah, air permukaan, serta buangan lainnya.
bahan buangan yang dihasilkan dari kegiatan industri dapat menimbulkan dampak yang merugikan bagi lingkungan yang selanjutnya akan mengganggu atau mempengaruhi kehidupan masyarakt itu sendiri.
Dampak dari kegiatan industri yang berpengaruh buruk tersebut terutama disebabkan oleh bahan-bahan pencemar yang dihasilkan oleh pabrik-pabrik industri. Bahan-bahan buangan tersebut dapat mencemari udara, perairan, dan tanah terutama disekitar kawasan industri tersebut. Perairan di kawasan itu dapat tercemar oleh bahan-bahan buangan yang sebagain besar berbentuk cair maupun limbah padat.
Pemakaian bahan pembersih sintesis yang dikenal dengan deterjen makin marak di masyarakat luas. Dalam deterjen terkandung komponen utamanya, yaitu surfaktan, baik bersifat kationik, anionik maupun non-ionik.
Surfaktan merupakan zat aktif permukaan yang termasuk bahan kimia organik. Ia memiliki rantai kimia yang sulit didegradasi (diuraikan) alam. Sesuai namanya, surfaktan bekerja dengan menurunkan tegangan air untuk mengangkat kotoran (emulsifier, bahan pengemulsi). Pada mulanya surfaktan hanya digunakan sebagai bahan utama pembuat deterjen. Namun karena terbukti ampuh membersihkan kotoran, maka banyak digunakan sebagai bahan pencuci lain.
Surfaktan merupakan suatu senyawa aktif penurun tegangan permukaan yang dapat diproduksi melalui sintesis kimiawi maupun biokimiawi. Karakteristik utama surfaktan adalah memiliki gugus polar dan non polar pada molekul yang sama.
Sifat aktif permukaan yang dimiliki surfaktan diantaranya mampu menurunkan tegangan permukaan, tegangan antarmuka dan meningkatkan kestabilan sistem emulsi. Hal ini membuat surfaktan banyak digunakan dalam berbagai industri, seperti industri sabun, deterjen, produk kosmetika dan produk perawatan diri, farmasi, pangan, cat dan pelapis, kertas, tekstil, pertambangan dan industri perminyakan, dan lain sebagainya.
Dengan makin luasnya pemakaian surfaktan sebagai bahan utama pembersih maka risiko bagi kesehatan dan lingkungan pun makin rentan.
Permasalahan
Deterjen sangat berbahaya bagi lingkungan karena dari beberapa kajian menyebutkan bahwa detergen memiliki kemampuan untuk melarutkan bahan dan bersifat karsinogen, misalnya 3,4 Benzonpyrene, selain gangguan terhadap masalah kesehatan, kandungan detergen dalam air minum akan menimbulkan bau dan rasa tidak enak. Deterjen kationik memiliki sifat racun jika tertelan dalam tubuh, bila dibanding deterjen jenis lain (anionik ataupun non-ionik).
Ada dua ukuran yang digunakan untuk melihat sejauh mana produk kimia aman di lingkungan yaitu daya racun (toksisitas) dan daya urai (biodegradable). ABS dalam lingkungan mempunyai tingkat biodegradable sangat rendah, sehingga deterjen ini dikategorikan sebagai ‘non-biodegradable’.
Dalam pengolahan limbah konvensional, ABS tidak dapat terurai, sekitar 50% bahan aktif ABS lolos dari pengolahan dan masuk dalam sistem pembuangan. Hal ini dapat menimbulkan masalah keracunan pada biota air dan penurunan kualitas air. LAS mempunyai karakteristik lebih baik, meskipun belum dapat dikatakan ramah lingkungan. LAS mempunyai gugus alkil lurus/ tidak bercabang yang dengan mudah dapat diurai oleh mikroorganisme.
LAS relatif mudah didegradasi secara biologi dibanding ABS. LAS bisa terdegradasi sampai 90 persen. Akan tetapi prorsesnya sangat lambat, karena dalam memecah bagian ujung rantai kimianya khususnya ikatan o-mega harus diputus dan butuh proses beta oksidasi. Karena itu perlu waktu. Menurut penelitian, alam membutuhkan waktu sembilan hari untuk mengurai LAS. Itu pun hanya sampai 50 persen.
Detergen ABS sangat tidak menguntungkan karena ternyata sangat lambat terurai oleh bakteri pengurai disebabkan oleh adanya rantai bercabang pada spektrumya. Dengan tidak terurainya secara biologi deterjen ABS, lambat laun perairan yang terkontaminasi oleh ABS akan dipenuhi oleh busa, menurunkan tegangan permukaan dari air, pemecahan kembali dari gumpalan (flock) koloid, pengemulsian gemuk dan minyak, pemusnahan bakteri yang berguna, penyumbatan pada pori – pori media filtrasi.
Kerugian lain dari penggunaan deterjen adalah terjadinya proses eutrofikasi di perairan. Ini terjadi karena penggunaan deterjen dengan kandungan fosfat tinggi. Eutrofikasi menimbulkan pertumbuahan tak terkendali bagi eceng gondok dan menyebabkan pendangkalan sungai. Sebaliknya deterjen dengan rendah fosfat beresiko menyebabkan iritasi pada tangan dan kaustik. Karena diketahui lebih bersifat alkalis. Tingkat keasamannya (pH) antara 10 - 12.
B. Deterjen
Produk yang disebut deterjen ini merupakan pembersih sintetis yang terbuat dari bahan-bahan turunan minyak bumi. Dibanding dengan produk terdahulu yaitu sabun, deterjen mempunyai keunggulan antara lain mempunyai daya cuci yang lebih baik serta tidak terpengaruh oleh kesadahan air.
Detergen adalah Surfaktant anionik dengan gugus alkil (umumnya C9 – C15) atau garam dari sulfonat atau sulfat berantai panjang dari Natrium (RSO3- Na+ dan ROSO3- Na+) yang berasal dari derivat minyak nabati atau minyak bumi (fraksi parafin dan olefin).
Setelah Perang Dunia II, detergen sintetik mulai dikembangkan akan tetapi karena gugus utama surfaktant ABS yang sulit di biodegradabel maka pada tahun 1965 industri mengubahnya dengan yang biodegradabel yaitu dengan gugus utama surfaktant LAS
Proses pembuatan detergen dimulai dengan membuat bahan penurun tegangan permukaan, misalnya : p – alkilbenzena sulfonat dengan gugus alkil yang sangat bercabang disintesis dengan polimerisasi propilena dan dilekatkan pada cincin benzena dengan reaksi alkilasi Friedel – Craft Sulfonasi, yang disusul dengan pengolahan dengan basa.
Pada umumnya, deterjen mengandung bahan-bahan berikut:
1. Surfaktan (surface active agent) merupakan zat aktif permukaan yang mempunyai ujung berbeda yaitu hydrophile (suka air) dan hydrophobe (suka lemak). Bahan aktif ini berfungsi menurunkan tegangan permukaan air sehingga dapat melepaskan kotoran yang menempel pada permukaan bahan. Surfaktant ini baik berupa anionic (Alkyl Benzene Sulfonate/ABS, Linier Alkyl Benzene Sulfonate/LAS, Alpha Olein Sulfonate/AOS), Kationik (Garam Ammonium), Non ionic (Nonyl phenol polyethoxyle), Amphoterik (Acyl Ethylenediamines)
2. Builder (Permbentuk) berfungsi meningkatkan efisiensi pencuci dari surfaktan dengan cara menon-aktifkan mineral penyebab kesadahan air. Baik berupa Phosphates (Sodium Tri Poly Phosphate/STPP), Asetat (Nitril Tri Acetate/NTA, Ethylene Diamine Tetra Acetate/EDTA), Silikat (Zeolit), dan Sitrat (asam sitrat).
3. Filler (pengisi) adalah bahan tambahan deterjen yang tidak mempunyai kemampuan meningkatkan daya cuci, tetapi menambah kuantitas atau dapat memadatkan dan memantapkan sehingga dapat menurunkan harga. Contoh : Sodium sulfate
4. Additives adalah bahan suplemen/ tambahan untuk membuat produk lebih menarik, misalnya pewangi, pelarut, pemutih, pewarna dan sebagainya yang tidak berhubungan langsung dengan daya cuci deterjen. Additives ditambahkan lebih untuk maksud komersialisasi produk. Contoh : Enzyme, Borax, Sodium chloride, Carboxy Methyl Cellulose (CMC) dipakai agar kotoran yang telah dibawa oleh detergent ke dalam larutan tidak kembali ke bahan cucian pada waktu mencuci (anti Redeposisi). Wangi – wangian atau parfum dipakai agar cucian berbau harum, sedangkan air sebagai bahan pengikat.
Menurut kandungan gugus aktifnya maka detergen diklasifikasikan sebagai berikut :
1. Detergen jenis keras
Detergen jenis keras sukar dirusak oleh mikroorganisme meskipun bahan tersebut dibuang akibatnya zat tersebut masih aktif. Jenis inilah yang menyebabkan pencemaran air.
Contoh: Alkil Benzena Sulfonat (ABS).
Proses pembuatan ABS ini adalah dengan mereaksikan Alkil Benzena dengan Belerang Trioksida, asam Sulfat pekat atau Oleum. Reaksi ini menghasilkan Alkil Benzena Sulfonat. Jika dipakai Dodekil Benzena maka persamaan reaksinya adalah
C6H5C12H25 + SO3 C6H4C12H25SO3H (Dodekil Benzena Sulfonat)
Reaksi selanjutnya adalah netralisasi dengan NaOH sehingga dihasilkan Natrium Dodekil Benzena Sulfonat
2. Detergen jenis lunak
Detergen jenis lunak, bahan penurun tegangan permukaannya mudah dirusak oleh mikroorganisme, sehingga tidak aktif lagi setelah dipakai .
Contoh: Lauril Sulfat atau Lauril Alkil Sulfonat. (LAS).
Proses pembuatan (LAS) adalah dengan mereaksikan Lauril Alkohol dengan asam Sulfat pekat menghasilkan asam Lauril Sulfat dengan reaksi:
C12H25OH + H2SO4 C12H25OSO3H + H2O
Asam Lauril Sulfat yang terjadi dinetralisasikan dengan larutan NaOH sehingga dihasilkan Natrium Lauril Sulfat.
Awalnya deterjen dikenal sebagai pembersih pakaian, namun kini meluas dalam bentuk produk-produk seperti:
1. Personal cleaning product, sebagai produk pembersih diri seperti sampo, sabun cuci tangan, dll.
2. Laundry, sebagai pencuci pakaian, merupakan produk deterjen yang paling populer di masyarakat.
3. Dishwashing product, sebagai pencuci alat-alat rumah tangga baik untuk penggunaan manual maupun mesin pencuci piring.
4. Household cleaner, sebagai pembersih rumah seperti pembersih lantai, pembersih bahan-bahan porselen, plastik, metal, gelas, dll.
Kemampuan deterjen untuk menghilangkan berbagai kotoran yang menempel pada kain atau objek lain, mengurangi keberadaan kuman dan bakteri yang menyebabkan infeksi dan meningkatkan umur pemakaian kain, karpet, alat-alat rumah tangga dan peralatan rumah lainnya, sudah tidak diragukan lagi. Oleh karena banyaknya manfaat penggunaan deterjen, sehingga menjadi bagian penting yang tidak dapat dipisahkan dari kehidupan masyarakat modern.
Tanpa mengurangi makna manfaat deterjen dalam memenuhi kebutuhan sehari-hari, harus diakui bahwa bahan kimia yang digunakan pada deterjen dapat menimbulkan dampak negatif baik terhadap kesehatan maupun lingkungan. Dua bahan terpenting dari pembentuk deterjen yakni surfaktan dan builders, diidentifikasi mempunyai pengaruh langsung dan tidak langsung terhadap manusia dan lingkungannya.
Umumnya pada deterjen anionik ditambahkan zat aditif lain (builder) seperti golongan ammonium kuartener (alkyldimetihylbenzyl-ammonium cloride, diethanolamine/ DEA), chlorinated trisodium phospate (chlorinated TSP) dan beberapa jenis surfaktan seperti sodium lauryl sulfate (SLS), sodium laureth sulfate (SLES) atau linear alkyl benzene sulfonate (LAS). Golongan ammonium kuartener ini dapat membentuk senyawa nitrosamin. Senyawa nitrosamin diketahui bersifat karsinogenik, dapat menyebabkan kanker.
Senyawa SLS, SLES atau LAS mudah bereaksi dengan senyawa golongan ammonium kuartener, seperti DEA untuk membentuk nitrosamin. SLS diketahui menyebabkan iritasi pada kulit, memperlambat proses penyembuhan dan penyebab katarak pada mata orang dewasa.
Dalam laporan lain disebutkan deterjen dalam badan air dapat merusak insang dan organ pernafasan ikan yang mengakibatkan toleransi ikan terhadap badan air yang kandungan oksigennya rendah menjadi menurun. Keberadaan busa-busa di permukaan air menjadi salah satu penyebab kontak udara dan air terbatas sehingga menurunkan oksigen terlarut. Dengan demikian akan menyebabkan organisme air kekurangan oksigen dan dapat menyebabkan kematian.
Builders, salah satu yang paling banyak dimanfaatkan di dalam deterjen adalah phosphate. Phosphate memegang peranan penting dalam produk deterjen, sebagai softener air. Bahan ini mampu menurunkan kesadahan air dengan cara mengikat ion kalsium dan magnesium. Berkat aksi softenernya, efektivitas dari daya cuci deterjen meningkat.
Phosphate yang biasa dijumpai pada umumnya berbentuk Sodium Tri Poly Phosphate (STPP). Phosphate tidak memiliki daya racun, bahkan sebaliknya merupakan salah satu nutrisi penting yang dibutuhkan mahluk hidup. Tetapi dalam jumlah yang terlalu banyak, phosphate dapat menyebabkan pengkayaan unsur hara (eutrofikasi) yang berlebihan di badan air, sehingga badan air kekurangan oksigen akibat dari pertumbuhan algae (phytoplankton) yang berlebihan yang merupakan makanan bakteri.
Populasi bakteri yang berlebihan akan menggunakan oksigen yang terdapat dalam air sampai suatu saat terjadi kekurangan oksigen di badan air dan pada akhirnya justru membahayakan kehidupan mahluk air dan sekitarnya. Di beberapa negara, penggunaan phosphate dalam deterjen telah dilarang. Sebagai alternatif, telah dikembangkan penggunaan zeolite dan citrate sebagai builder dalam deterjen
Deterjen Sintetik mempunyai sifat-sifat mencuci yang baik dan tidak membentuk garam-garam tidak larut dengan ion-ion kalsium dan magnesium yang biasa terdapat dalam air sadah. Deterjen sintetik mem­punyai keuntungan tambahan karena secara relatif bersifat asam kuat, oleh karena itu tidak menghasilkan endapan sebagai asam-asam yang mengendap suatu karakteristis yang tidak nampak pada sabun.
Unsur kunci dari deterjen adalah bahan surfaktan atau bahan aktif permukaan, yang beraksi dalam menjadikan air menjadi lebih basah (wetter) dan sebagai bahan pencuci yang lebih baik. Surfaktan terkonsentrasi pada batas permukaan antara air dengan gas (udara), padatan-padatan (debu), dan cairan-cairan yang tidak dapat bercampur (minyak). Hal ini terjadi karena struktur “Amphiphilic“, yang berarti bagian yang satu dari molekul adalah suatu yang bersifat polar atau gugus ionik (sebagai kepala) dengan afinitas yang kuat untuk air dan bagian lainnya suatu hidrokarbon (sebagai ekor) yang tidak suka air.
Deterjen Sintetik mempunyai sifat-sifat mencuci yang baik dan tidak membentuk garam-garam tidak larut dengan ion-ion kalsium dan magnesium yang biasa terdapat dalam air sadah. Deterjen sintetik mem­punyai keuntungan tambahan karena secara relatif bersifat asam kuat, oleh karena itu tidak menghasilkan endapan sebagai asam-asam yang mengendap suatu karakteristis yang tidak nampak pada sabun.
C. Sabun
Sabun adalah suatu gliserida (umumnya C16 dan C18 atau karboksilat suku rendah) yang merupakan hasil reaksi antara ester (suatu derivat asam alkanoat yaitu reaksi antara asam karboksilat dengan alkanol yang merupakan senyawa aromatik dan bermuatan netral) dengan hidroksil dengan residu gliserol (1.2.3 – propanatriol). Apabila gliserol bereaksi dengan asam – asam yang jenuh (suatu olefin atau polyunsaturat) maka akan terbentuk lipida (trigliserida atau triasilgliserol).
Sabun ditemukan oleh orang Mesir kuno (egyptian) beberapa ribu tahun yang lalu. Pembuatan sabun oleh suku bangsa Jerman dilaporkan oleh Julius Caesar. Teknik pembuatan sabun dilupakan orang dalam Zaman Kegelapan (Dark Ages), namun ditemukan kembali selama Renaissance. Penggunaan sabun meluas pada abad ke – 18.
Gliserida (lelehan lemak sapi atau lipida lain) dididihkan bersama – sama dengan larutan lindi (dulu digunakan abu kayu karena mengandung K-karbonat tapi sekarang NaOH) terjadi hidrolisis menjadi gliserol dan garam Sodium dari asam lemak, setelah sabun terbentuk kedalamnya ditambahkan NaCl agar sabun mengendap dan dapat dipisahkan dengan cara penyaringan. Gliserol, lindi dan NaCl berlebih dipisahkan dengan cara destilasi. Sabun yang masih kotor dimurnikan dengan cara pengendapan berulang – ulang (represipitasi). Akhirnya ditambahkan zat aditif (batu apung, parfum dan zat pewarna)
Jenis – jenis Sabun :
1. Sabun keras atau sabun cuci.
Dibuat dari lemak dengan NaOH, misalnya Na – Palmitat dan Na – Stearat.
2. Sabun lunak atau sabun mandi.
Dibuat dari lemak dengan KOH, misalnya K-Palmitat dan K-Stearat
Suatu molekul sabun mengandung suatu rantai hidrokarbon panjang plus ujung ion. Bagian hidrokarbon dari molekul itu bersifat hidrofobik dan larut dalam zat – zata non polar, sedangkan ujung ion bersifat hidrofilik dan larut dalam air. Karena adanya rantai hidrokarbon, sebuah molekul sabun secara keseluruhan tidaklah benar – benar larut dalam air. Namun sabun mudah tersuspensi dalam air karena membentuk misel (micelles), yakni kumpulan (50 – 150) molekul sabun yang rantai hidrokarbonnya mengelompok dengan ujung – ujung ionnya menghadap ke air.
Sifat umum Sabun dan Detergen:
1. Bersifat basa
R – C-O- + H2O R – C-OH + OH-
2. Tidak berbuih di air sadah (Garam Ca, Mg dari Khlorida dan Sulfat)
C17H35COONa + CaCl2 Ca (C17H35COO)2 + NaCl
3. Bersifat membersihkan
R- (non polar dan Hidrofob) akan membelah molekul minyak dan kotoran menjadi partikel yang lebih kecil sehingga air mudah membentuk emulsi dengan kotoran dan mudah dipisahkan. Sedangkan -C-O- (polar dan Hidrofil) akan larut dalam air membentuk buih dan mengikat partikel – partikel kotoran sehingga terbentuk emulsi.
Suatu gambaran dari stearat terdiri dari ion karboksil sebagai “kepala” dengan hidrokarbon yang panjang sebagai “ekor ” :
H H H H H H H H H H H H H H H H H O
H – C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-O
H H H H H H H H H H H H H H H H H
Dengan adanya minyak, lemak, dan bahan organik tidak larut dalam air lainnya, kecenderungan untuk “ekor” dan anion melarut dalam bahan organik, sedangkan bagian “kepala ” tetap tinggal dalam larutan air. Oleh karena itu sabun mengemulsi atau mensuspensi bahan organik dalam air. Dalam proses ini, anion-anion membentuk partikel-partikel koloid micelle.
Keuntungan yang utama sebagai bahan pencuci karena terjadi reaksi dengan kation-kation divalen membentuk garam-garam dari asam lemak yang tidak larut. Padatan-padatan tidak larut ini, biasanya garam-garam dari magnesium dan kalsium.
2 C17H35COO- Na+ Ca2+ Ca (C17H35CO2)2 (s) + 2 Na+
Sabun yang masuk kedalam buangan air atau suatu sistem ekuatik biasanya langsung terendap sebagai garam – garam kalsium dan magnesium. Oleh karena itu beberapa pengaruh dari sabun dalam larutan mungkin dapat dihilangkan. Akibatnya dengan biodegradasi, sabun secara sempurna dapat dihilangkan dari lingkungan.
D. Sistem pengolahan
Pengolahan air sangat tergantung dari karakteristik atau kualitas air baku yang digunakan, metode pengolahan air yang digunakan berkaitan dengan pencemaran-pencemaran yang ada dalam air. Pencemaran-pencemaran yang harus diperhatikan pada kebanyakan persediaan air adalah :
1. Bakteri pathogen
2. Kekeruhan dan bahan-bahan terapung
3. Warna
4. Rasa dan bau
5. Senyawa-senyawa organic
6. Kesadahan
Faktor-faktor ini terutama berhubungan dengan kesehatan dan estetiks (Ray.K dan Joseph. B, 1991)
Tujuan pengolahan air baku menjadi air bersih pada prinsipnya menurut Geyer dan Okun (1968) meliputi :
1. Penjernihan, proses ini diperlukan karena dalam air yang berasal dari badan air banyak membawa kotoran yang berupa butiran-butiran baik kasar maupun halus, ada yang tersuspensi berupa koloid dan harus diendapkan terlebih dahulu.
2. Desinfeksi, pemberian desinfektan dengan dosis tertentu untuk mematikan virus dan bakteri pembawa penyakit, juga menekan pertumbuhan lumut (algae) untuk menjaga nilai estetika. Pengolahan air yang akan digunakan dapat digolongkan menurut sifatnya yang akan menghasilkan perubahan yang diamati.
Pengolahan air secara umum dapat digolongkan menjadi :
1. Pengolahan Fisis
Pengolahan air yang bertujuan untuk mengurangi atau menghilangkan kotoran-kotoran yang kasar, penyisihan lumpur dan pasir serta mengurangi zat-zat organik dalam air yang akan diolah.
Contoh : filterisasi, evaporasi, sekrining, sentrifugasi, flotasi, RO, dan sebagainya.
2. Pengolahan Kimiawi
Proses pengolahan dengan penambahan bahan kimia tertentu dengan tujuan untuk memperbaiki kualitas air.
Contoh : koagulasi, ion exchange resin, khlorinasi, ozonasi, dan sebagainya.
3. Pengolahan Biologis
Bertujuan menghilangkan atau mengurangi kandungan senyawa organik atau anorganik. Fungsi ini dapat dicapai dengan bantuan aktifitas mikroorganisma gabungan (mixed culture) yang heterotrofik.
Mikroorganisma mengkonsumsi bahan-bahan organik untuk membentuk biomassa sel baru serta zat-zat organik, dan memanfaatkan energi yang dihasilkan dari reaksi oksidasi untuk metabolismenya
Contoh : lumpur aktif, filter trickling, kolam oksidasi, fermentasi metan, dekomposisi materi toksik, denitrifikasi, dan sebagainya.
Pengolahan air secara teknik dapat dilakukan dengan berbagai cara.
Teknik koagulasi dapat diterapkan dengan bantuan koagulan kimia seperti Polyelektrolit (misalnya : PAC atau Poly Aluminium Chloride, PAS atau Poly Aluminium Sulfat), garam Aluminat (misalnya : Alum, Tawas), garam Fe, khitin, dan sebagainya. Untuk Flokulasi dapat digunakan polimer kationik, anionik, atau nonionik (misalnya : poliakrilik, poliakrilamida). Sedangkan untuk pengendapan dapat digunakan teknologi baffle, settler, lumpur aktif, aerasi, dan lain - lain. Untuk lakuan yang optimal teknik tersebut dapat digabung.
Teknik filtrasi dapat diterapkan dengan bantuan media filter seperti pasir (misalnya : dolomit, diatomae, silika, antrasit), senyawa kimia atau mineral (misalnya : kapur, zeolit, karbon aktif, resin, ion exchange), membran (Osmosis, RO, dialisis, ultrafiltrasi), biofilter atau teknik filtrasi lainnya.
Teknik Redoks dapat diterapkan dengan bantuan inhibitor seperti senyawa khlor (misalnya : Cl2, kaporit, Na-Hypo, Isosyanurat), non khlor (misalnya : H2O2, O3, UV, KMnO4, garam sulfit, terusi), oksida asam basa (HCl, NaOH, H2SO4, garam kalsium, karbonat, amonium) atau teknik redoks lainnya.
Bioremoval merupakan teknik pengolahan menggunakan biomaterial. Biomaterial tersebut antara lain lumut, daun teh, sekam padi, dan sabut kelapa sawit, atau juga dari bahan non biomaterial seperti perlit, tanah gambut, lumpur aktif dan lain-lain.
Bioremidiasi merupakan pengembangan dari teknik bioremoval dengan bantuan mikroorganisma seperti bakteri, kapang dan jamur baik aerobik maupun anaerobik atau dengan menggunakan alga, tanaman dan hewan.
Teknik pengolahan lainnya yaitu adalah Elektrolisa. Elektrolisa mampu memisahkan kation – anion dengan menggunakan efek beda potensial dari masing – masing muatan elektrolit. Apabila ion – ion ditangkap oleh membran selektif atau media lain maka disebut Elektrodialisis. Sedangkan bila digabung dengan koagulasi maka disebut elektrokoagulasi.
Elektrodialisis adalah proses pemisahan elektrokimia dengan ion – ion berpindah melintasi membran selektif anion dan kation dari larutan encer ke yang lebih pekat akibat aliran arus searah (DC).
Elektrodialisis memisahkan bahan (ion) dari larutan, proses ini menggunakan perbedaan tegangan listrik sebagai driving force, membrane pertukaran ion (ion exchange membrane) diatur sedemikian rupa sehingga terjadi perpindahan ion secara bolak balikdiantara dua elektroda dalam suatau larutan. Pengembangan proses dilaksanakan dengan muatan eletroda bolak – balik (elektrodialisa bolak – balik).
Reverse osmosis adalah kebalikan dari proses osmosis alami. Osmosis adalah perpindahan cairan dari konsentrasi tinggi ke konsentrasi rendah yang melewati membran semipermeabel sedangkan untuk reverse osmosis adalah perpindahan cairan dari konsentrasi rendah ke konsentrsai tinggi. Reverse osmosis memiliki keunggulan, seperti : efisiensi yang tinggi, biaya yamg rendah dan kualitas air yang dihasilkan sangat berkualitas.
Pengolahan air dapat menggunakan sistem adsorpsi maupun absorpsi. Media adsorben diantaranya adalah kaliksarena (calixarene), karbon aktif, zeolit, bioabsorpsi, dan lainnya. Beberapa jenis mikroorganisme yang dapat dimanfaatkan sebagai bahan bioabsorpsi terutama adalah dari golongan alga yakni alga dari divisi Phaeophyta, Rhodophyta dan Chlorophyta.
Pembahasan
Zat aktif permukaan mempunyai sifat khas, yaitu mempunyai kecenderungan untuk berpusat pada antarmuka dan mempunyai kemampuan menurunkan dan menaikkan tegangan antarmuka atau tegangan permukaan.
Suatu molekul dalam rongga cairan akan mengalami tarik – menarik dan tolak menolak kesegala arah, tetapi suatu molekul pada antarmuka tak sama tarik menariknya kesegala arah, sehingga molekul akan mengalami gaya tarik total kedalam dan terjadi tegangan permukaan (surface tension) atau tegangan antar muka (interface tension).
Permukaan disini adalah perbatasan dan perbedaan fasa dari yang bersangkutan. Dalam hal ini perbatasan permukaan antara fasa gas dan cair.
Dijelaskan bahwa molekul – molekul yang ada di tengah – tengah cairan mengalami gaya tarik atau tolak dari segala jurusan (intermolekul). Sedangkan molekul – molekul di permukaan mengalami gaya tarik dan tolak kurang seimbang, karena diatas permukaan terdapat moleku-molekul gas yang letaknya tidak serapat molekul cairan, sehingga gaya yang ditimbulkan oleh molekul – molekul gas tidak sebesar gaya tarik dan tolak dari molekul – molekul cairan. Sehingga didalam cairan, molekul – molekul dari dalam cairan ke permukaan, diperlukan energi.
Energi ini menyebabkan molekul menyusup disamping molekul-molekul lain di permukaan, sehingga permukaan harus menjadi besar dan ini berarti tegangan permukaan terpaksa berkurang setiap satuan luas. Disini terjadi pengurangan tegangan permukaan, disertai dengan pemakaian sejumlah molekul permukaan. Peristiwa ini dinamakan adsoprsi positif dan keadaan sebaliknya adsorpsi negatif.
Sifat surfaktant bergantung pada suatu molekul yang memiliki sifat lipofilik dan hidrofilik. Pada batas antarfase (misalnya, minyak lemak dan air atau udara dan air), molekul surfaktant bergabung menyebabkan turunnya tegangan permukaan. Keberadaan busa menyebabkan terbentuknya perluasan daerah antarfase dan akumulasi surfaktant dalam air busa dan akibatnya terjadi penurunan kepekatan surfaktant dalam massa air.
Surfaktant ABS terutama dalam garam – garam Na, terdapat dalam jalur alamiah sebagai garam kalsium. Garam ini memiliki kelarutan dalam air yang rendah dan terdapat sebagai suatu suspensi yang tidak stabil dan memasuki sedimen dalam bentuk deposit.
Surfaktant dalam sedimen bertindak sebagai dua fraksi yaitu sebuah fraksi labil dan sebuah fraksi yang lebih kuat dijerap. Pada saat sedimen disuspensikan kembali (menurut angka Reynold), fraksi labil tersebar kembali menyebabkan keberadaan surfaktant pada massa air dan menurunkan tegangan permukaan.
Beberapa molekul lipofilik yang dapat dibiodegradasi dapat dilindungi sementara dari degradasi oleh adanya surfaktant. Misel yang mengandung molekul yang rentan menjadi terkurung oleh molekul surfaktant. Misel terdiri dari sebuah struktur teraliminasi secara membulat yang mana kulit bagian luar terdiri dari gugus bermuatan dan kulit bagian dalam mengandung bagian lipofilik molekul. Lapisan kulit luar mencegah kontak dengan misel lainnya dan membentuk suatu lapisan yang dapat menyediakan perlindungan sementara kepada molekul lipofilik internal.
Surfaktan dapat mengubah sifat aliran hidraulik media porous suatu mineral. Pembentukan misel garam kalsium tensides ABS dalam sistem alamiah memungkinkan surfaktan menjadi lebih mudah diendapkan daripada garam Natrium. Pengendapan surfaktant ini menyebabkan pembentukan suatu lapisan gelatin garam kalsium yang dapat menghalangi aliran melalui sistem porous. Lapisan permukaan molekul surfaktant pada batas antarfase udara – air dapat mencegah perpindahan Oksigen menurut bertambah panjangnya rantai alkil dalam surfaktan.
Gugus yang bercabang sukar dibiodegradasi dibanding gugus yang lurus (linier). Biodegradabilitas bertambah sampai panjang alkil kira – kira 15 atom Karbon dan kemudian menurun, memperlihatkan kenaikan biodegradabilitas pada panjang rantai yang lebih panjang lagi. Gugus alkil terdegradasi secara cepat dan surfaktant aslinya menghilang, tetapi moiety polietilat tertinggal untuk waktu yang lama (gugus yang tertinggal ini kemungkinan toksik terhadap kehidupan perairan).
Detergen merupakan suatu derivatik zat organik sehingga akumulasinya menyebabkan meningkatnya COD dan BOD dan angka permanganat sehingga dalam pengolahannya sangat cocok menggunakan teknik biologi.
Proses biologis dapat dikelompokkan berdasarkan pemanfaatan oksigen, sistem pertumbuhan, proses operasi.
Ditinjau dari pemanfaatan oksigennya, proses biologis untuk mengolah air buangan dapat dikelompokkan ke dalam empat kelompok utama, yaitu : proses aerobic, proses anaerobic, proses anoksid dan kombinasi antara proses aerobik dengan salah satu proses tersebut.
Berdasarkan sistem pertumbuhannya, proses pengolahan biologis terbagi atas : sistem pertumbuhan tersuspensi, sistem pertumbuhan yang menempel pada media inert yang diam atau kombinasi keduanya.
Proses biologis dapat pula dikelompokkan atas dasar proses operasinya. Ada tiga macam proses yang termasuk dalam cara pengelompokan ini, yaitu :
  1. Proses kontinu dengan atau tanpa daur ulang
  2. Proses batch
  3. Proses semi batch
Proses kontinu biasa digunakan untuk pengolahan aerobik, sedangkan proses batch atau semi batch lebih banyak digunakan untuk sistem anaerobic.
Apabila BOD tidak melebihi 400 mg/l, proses aerob masih dapat dianggap lebih ekonomis dari anaerob. Pada BOD lebih tinggi dari 4000 mg/l, proses anaerob menjadi lebih ekonomis.
Pada beberapa penelitian membuktikan bahwa alkyl-benzena sulfonat dapat diuraikan dengan bakteri Staphylococcus epidermis, Enterobacter gergoviae, Staphylococcus aureus, Pseudomonas facili, Pseudomonas fluoroscens, Pseudomonas euruginosa, Kurthia zopfii, dan sebagainya. [27
Bakteri ini akan merombak detergen yang juga merupakan zat organik sebagai bahan makanan menjadi energi. Degradasi lebih efektif jika menggunakan lumpur aktif. Dengan cara tersebut air limbah dengan lumpur aktif yang, megandung mikroba diaerasi (untuk memasukkan oksigen) hingga terjadi dekomposisi sebagai berikut :
Organik + O2—-> CO2 + H20 + Energi
Cara lumpur aktif yang telah dilakukan dapat menurunkan COD, BOD 30 - 70 %, bergantung pada karakteristik air limbah yang, diolah dan kondisiproses lumpur aktif yang dilakukan.[1
Proses lumpur aktif terus berkembang dengan berbagai modifikasinya, antara lain: oxidation ditch dan kontak-stabilisasi. Dibandingkan dengan proses lumpur aktif konvensional, oxidation ditch mempunyai beberapa kelebihan, yaitu efisiensi penurunan BOD dapat mencapai 85%-90% (dibandingkan 80%-85%) dan lumpur yang dihasilkan lebih sedikit. Selain efisiensi yang lebih tinggi (90%-95%), kontak stabilisasi mempunyai kelebihan yang lain, yaitu waktu detensi hidrolis total lebih pendek (4-6 jam).
Dengan tangki septic-filter up flow yang berisi pecahan batu bata sebagai media hidup mikroba sanggup mereduksi kandungan Metylene Blue Active Surfactan atau MBAS (untuk mendeteksi kandungan detergen) hingga mencapai efesiensi 87,93 persen. Dari sampel, air limbah yang sebelum dimasukkan tangki memiliki kandungan MBAS sekitar 2,7 mg per liter. Setelah keluar tangki, air hanya mengandung MBAS sekitar 0,326 mg per liter, atau lebih rendah dari baku mutu yang digariskan, yakni 0,5 mg per liter. Adapun BOD yang didapat adalah 483,75 mg per liter (sebelum proses) dan 286,25 mg per liter (setelah proses) atau kandungan BOD berkurang 40 persen lebih. [10
Detergen mempunyai sifat koloid. Karakteristik dari partikel koloid dalam air sangat dipengaruhi oleh muatan listrik dan kebanyakan partikel tersuspensi bermuatan negative. Cara mendestabilkan partikel dilakukan dalam dua tahap. Pertama dengan mengurangi muatan elektrostatis sehingga menurunkan nilai potensial zeta dari koloid, proses ini lazim disebut sebagai koagulasi. Kedua adalah memberikan kesempatan kepada partikel untuk saling bertumbukan dan bergabung, cara ini dapat dilakukan dengan cara pengadukan dan disebut sebagai flokulasi.
Pengurangan muatan elektris dilakukan dengan menambahkan koagulan seperti PAC. Di dalam air PAC akan terdisosisi melepaskan kation Al3+ yang akan menurunkan zeta potensial dari partikel. Sehingga gaya tolak-menolak antar partikel menjadi berkurang, akibatnya penambahan gaya mekanis seperti pengadukan akan mempermudah terjadinya tumbukan yang akan dilanjutkan dengan penggabungan partikel-partikel yang akan membentuk flok yang berukuran lebih besar. Flok akan diendapkan pada unit sedimentasi maupun klarifikasi. Lumpur yang terbentuk akan dibuang menggunakan scraper.
Cara koagulasi umumnya berhasil menurunkan kadar bahan organik (COD,BOD) sebanyak, 40-70 %.[1
Molekul organik bersifat polar sehingga salah satu ujungnya akan cenderung tertarik pada air (disebut sebagai hidrofilik/suka air) sedangkan ujung yang lain bersifat hidrofobik (benci air). Permukaan molekul aktif seperti ini akan tertarik pada antarmuka air-gas pada permukaan gelembung udara, sehingga molekul-molekul tersebut akan membentuk suatu lapisan tipis disana dan membentuk buih/busa. Dalam suatu protein skimmer; ketika gelembung udara meninggalkan air menuju tampungan busa, gelembung udara tersebut akan kolaps sehingga pada akhirnya bahan-bahan organik akan tertinggal pada tampungan busa.
Detergen dan sabun mampu memecah minyak dan lemak membentuk emulsi sehingga dapat diendapkan dengan menambahkan inhibitor garam alkali seperti kapur dan soda. Buih yang terbentuk akan dapat dihilangkan dengan proses skimming (penyendokan buih) atau flotasi.
Proses flotasi banyak digunakan untuk menyisihkan bahan-bahan yang mengapung juga dapat digunakan sebagai cara penyisihan bahan-bahan tersuspensi (clarification) atau pemekatan lumpur endapan (sludge thickening) dengan memberikan aliran udara ke atas (air flotation).
Adsorpsi menggunakan karbon aktif dapat digunakan untuk mengurangi kontaminasi detergen. Detergen yang merupakan molekul organik akan ditarik oleh karbon aktif dan melekat pada permukaannya dengan kombinasi dari daya fisik kompleks dan reaksi kimia. Karbon aktif memiliki jaringan porous (berlubang) yang sangat luas yang berubah-ubah bentuknya untuk menerima molekul pengotor baik besar maupun kecil.
Permukaan karbon yang mampu menarik molekul organik misalnya merupakan salah satu contoh mekanisme jerapan, begitu juga yang terjadi pada antar muka air-udara, yaitu mekanisme yang terjadi pada suatu protein skimmer. Jerapan adalah suatu proses dimana suatu partikel “menempel” pada suatu permukaan akibat dari adanya “perbedaan” muatan lemah diantara kedua benda (gaya Van der Waals), sehingga akhirnya akan terbentuk suatu lapisan tipis partikel-pertikel halus pada permukaan tersebut. Disamping karbon aktif sebagai adsorben juga tergolong sebagai zat pemberat.
Zeolit dapat menurunkan COD 10-40%, dan karbon aktif dapat menurunkan COD 10-60 %.[1
Detergen mempunyai ikatan – ikatan organik. Proses khlorinasi akan memecah ikatan tersebut membentuk garam ammonium khlorida meskipun akan menghasilkan haloform dan trihalomethans jika zat organiknya berlebih.
Dari pembahasan diatas umumnya pengolahan detergen secara teknik dapat mengadopsi prinsip pengolahan limbah cair dimana skemanya dapat dilihat seperti dibawah ini :
Kesimpulan
1. Detergen merupakan salah satu polutan air yang harus dihilangkan.
2. Teknik pengolahan detergen dapat dilakukan menggunakan berbagai macam teknik misalnya biologi yaitu dengan bantuan bakteri, koagulasi-flokulasi-flotasi, adsorpsi karbon aktif, lumpur aktif, khlorinasi dan teknik representatif lainnya tergantung dari efektifitas kebutuhan dan efisiensi financial.
referensi :http://www.duniakampus.co.cc/2008/11/mengatasi-bahaya-penggunaan.html

Perkembangan Teknologi Solar Cell Menuju Teknologi Siap Guna yang Bersih dan Ekonomis

Fenomena menarik dari pengunaan solar cell adalah ia dapat ditemukan pada kawasan pemukiman yang mewah, namun solar cell juga dapat ditemukan pada kawasan remote area dimana listrik sulit masuk ke konsumen karena infrastruktur dan ketersediaan sumber energi yang tidak memadai di daerah tersebut.
Solar Cell pada Pesawat Luar Angkasa
Solar Cell pada Pesawat Luar Angkasa
Photovoltaic cell atau lebih dikenal dengan solar cell muncul pertama kali pada tahun 1957. Pada awal kemunculannya, solar cell ditujukan untuk keperluan luar angkasa. Sebelumnya, satelit dan pesawat luar angkasa menggunakan batrai kimia untuk memenuhi kebutuhan listrik mereka. Satelit yang memiliki umur operasi tinggi tidak mungkin menggantungkan kebutuhan listrik hanya dari batrai kimia. Di luar angkasa cahaya matahari merupakan satu – satunya sumber energi yang paling mungkin dimanfaatkan. Ide ini merupakan dorongan utama bagi pengembangan sel photovoltaic.
Kini, keterbatasan energi mendorong manusia untuk memanfaatkan segala sumber daya terbaharukan yang ada di lingkungan. Solar cell merupakan salah satu pilar yang dapat digunakan untuk memenuhi sebagian kebutuhan energi manusia. Meski keterbatasan energi merupakan isu yang mendorong pengembangan solar cell, isu lain yang tidak kalah penting adalah adanya dorongan peradaban untuk merancang sistem penyediaan energi yang tidak hanya aman bagi manusia namun juga bersahabat dengan lingkungan. Pengembangan solar cell menjadi sebuah tuntutan ketika manusia dihadapkan pada berbagai kerusakan lingkungan akibat penggunaan bahan bakar fosil dan global warming.
Perkembangan solar cell diawali dengan perkembangan pengetahuan terkait sifat cahaya sebagai gelombang elektro magnetik dan penemuan Einstein terkait energi photon. Peningkatan penggunaan bahan – bahan semikonduktor   dalam komponen mikroelektronika juga mendorong pada inovasi solar cell. Solar cell telah mengalami banyak perkembangan dari awal penemuannya. Pada awal penemuan, solar cell hanya mampu memproduksi listrik sebesar 1 watt. Kini solar cell yang dipasarkan telah dapat mencapai kapasitar produksi listrik 10 watt. Bahkan pada skala laboratorium, telah peneliti telah mampu menciptakan solar cell dengan kapasitas 10 – 100 watt. Pada awal produksinya solar cell hanya memiliki efisiensi 10 %. Perkembangan teknologi saat ini telah mampu meningkatkan efisiensi energi dari solar cell hingga 18 %. Kajian peneliti menyebutkan bahwa efisiensi maksimum yang mungkin dicapai solar cell adalah 33 % dari total energy matahari yang diserapnya. Peningkatan efisiensi solar cell ini dilakukan dengan berbagai cara salah satunya memainkan luas permukaan kontak silicon dengan plat metal. Selain itu penambahan senyawa phosphor, penyesuaian temperatur optimal operasi solar cell, dan teknologi penyesuaian ketebalan film juga mempengaruhi efisiensi konversi energy solar cell. Terobosan ini menjadikan solar cell semakin dekat kepada konsumennya.

Banyak perusahaan telah mampu memberikan jaminan umur penggunaan film solar cell 25 tahun. Meski begitu, umur batrai yang digunakan untuk solar cell hanya 2 tahun. Masalah ini merupakan masalah utama dalam penggunaan solar cell. Energi yang dihasilkan dari solar cell berupa energy listrik yang sulit disimpan. Solusi yang ditawarkan para ahli adalah mengkonversi energy listrik yang dihasilkan solar cell menjadi energi kimia yang mudah disimpan. Alternatif proses yang ditawarkan adalah dengan elektrolisis H2 dari air laut dan mereaksikan H2 dengan CO2. Metode ini ditunjukkan dalam diagram berikut.
Sistem Produksi Metanol dari Air Laut dan CO2 dengan Sumber Energi Solar Cell
Sistem Produksi Metanol dari Air Laut dan CO2 dengan Sumber Energi Solar Cell
Berbagai saran untuk pengembangan solar cell telah dilakukan. Pengembangan teknologi ini masih tetap dikendalai masalah biaya. Bila dibandingkan dengan energi yang dihasilkan dari bahan bakar fosil, biaya yang dibutuhkan untuk proses produksi energi dari solar cell lebih tinggi. Sebenarnya kalkulasi biaya ini tidak memperhitungkan biaya kompensasi untukpengatasan dampak lingkungan yang ditimbulkan. Jika biaya ini turut diperhitungkan, maka biaya produksi energy dari solar cell akan lebih rendah. Selain itu peningkatan produksi dan penggunaan listrik dari solar cell akan menurunkan biaya operasi persatuan daya yang dihasilkan dari solar cell.
Pustaka:
- Green, Martin A., 2000, Power to the People : Sunlight to Electricity Using Solar Cells, University of New South Wales
- http://majarimagazine.com/2011/07/perkembangan-teknologi-solar-cell-menuju-teknologi-siap-guna-yang-bersih-dan-ekonomis/

Peluang Pekerjaan Lainnya Bagi Sarjana Teknik Kimia di Indonesia

Setelah seorang mahasiswa Teknik Kimia mendapat gelarnya, yaitu S. T, apa sih pekerjaan terfavorit mereka di dunia kerja? Tentunya bagi kalian yang masih mahasiswa Teknik Kimia, kalian akan melakukan rencana jangka panjang akan bekerja dimana, di bidang apa, di perusahaan apa, dan sebagai apa. Bagi kalian yang telah lulus atau baru lulus dari pendidikan Teknik Kimia, kalian juga tentunya pasti lebih memikirkan bidang pekerjaan yang akan kalian tekuni di dunia kerja nanti. Banyak pilihan yang terbuka untuk kita terjuni saat memasuki dunia kerja, namun apa sih yang terfavorit? Apa sih bidang pekerjaan dan perusahaan yang merupakan favorit lulusan Teknik Kimia saat ini? Anda dapat membaca paparkan trend pekerjaan terfavorit sebagai seorang sarjana Teknik Kimia di Indonesia dalam artikel Majari yang lalu, yaitu di: http://majarimagazine.com/2011/06/6-pekerjaan-terfavorit-seorang-sarjana-teknik-kimia/
Kemudian, muncul pertanyaan, jikalau saya tidak memiliki passion bekerja di Oil & Gas, FMCG, EPCC, Petrokimia, Chemical Industry, dan Consultant, lalu bagaimana peluang kerja di tempat lain? Berikut pemaparan dari informasi yang saya ketahui mengenai peluang pekerjaan lainnya bagi sarjana Teknik Kimia di Indonesia untuk memberikan informasi lebih mendetail bagi kesempatan kerja lulusan Teknik Kimia Indonesia.

1. Industri Renewable Energy
Industri renewable energy merupakan industri masa depan menurut saya, karena memiliki segudang potensi untuk menjadi alternatif energi pengganti oil and gas. Kebutuhan energi akan terus berkembang, seiring dengan peningkatan jumlah penduduk dan konsumsi energi di dunia. Oleh karena itu, lahirnya industri ini harus didukung agar dapat mengatasi berbagai krisis energi yang melanda di belahan dunia, salah satunya Indonesia. Industri baru ini perlu didukung oleh segenap generasi muda sebagai pekerja-pekerjanya agar dapat membangun industri renewable energy ini. Industri ini mulai berkembang di Indonesia, misalnya Wilmar dan PT Ganesha Energy 77.
2. Industri Agrobisnis
Industri agrobisnis mempunyai peluang besar di Indonesia karena memang Indonesia memiliki potensi besar dalam dunia bisnis agrobisnis. Perusahaan yang bergerak di bidang ini misalnya adalah Triputra Group dan Wilmar.
3. Staff Ahli Kementerian
Sesuai pengalaman saya, saya sering mendengar beberapa senior saya bekerja menjadi Staff Ahli Kementerian RI, terutama menjadi Staff Ahli Kementerian Lingkungan Hidup dan Staff Ahli Kementrian ESDM. Bagi yang suka bekerja sebagai pegawai pemerintahan, mungkin pekerjaan ini dapat sesuai dengan passion Anda.
4. Industri / Unit Pengolahan Limbah
Industri pengolahan limbah dapat dimasuki oleh lulusan Teknik Kimia Indonesia karena memang lulusan Teknik Kimia punya basic relatif kuat dalam pengolahan limbah (waste treatment). Lulusan Teknik Kimia seringkali dikatakan dapat merebut kesempatan kerja lulusan Teknik Lingkungan. Lulusan Teknik Kimia dapat bekerja di perusahaan PPLI, atau di-support system berbagai perusahaan besar, misalnya di unit pengolahan limbah di Oil and Gas Industry.
5. Banking
Dunia perbankan juga dapat diselami oleh lulusan Teknik Kimia, misalnya bekerja sebagai analis di bank untuk membantu feasibilty study/analysis ketika bank hendak memberikan pinjaman ke suatu badan usaha/organisasi yang hendak meminjam dana. Lulusan Teknik Kimia akan memiliki kelebihan analisis dalam feasibility study untuk proyek pembangunan industri-industri, mulai dari industri kecil sampai industri besar. Hal tersebut karena lulusan Teknik Kimia dibekali dengan pengalaman analisis studi kelayakan perancangan pabrik kimia.
6. Peneliti
Peneliti merupakan salah satu peluang pekerjaan lulusan Teknik Kimia. Bagi yang menyukai bidang penelitian di Laboratorium, kalian dapat bergabung ke lembaga penelitian, misalnya BPPT, LIPI, asisten dosen / proffesor dalam membantu penelitiannya. Bagi kalian yang memiliki passion mengembangkan inovasi ilmu pengetahuan & teknologi dan senang menemukan hal-hal baru, pekerjaan ini sangat sesuai dengan pribadi Anda.
7. Dosen / Professor / Guru Besar Universitas
Tentunya pekerjaan menjadi dosen, proffesor, atau bahkan Guru Besar di berbagai Universitas Teknik Kimia Indonesia menjadi peluang tersendiri bagi Sarjana Teknik Kimia. Namun, memang untuk menjadi dosen, di beberapa universitas besar mengharuskan calon dosen tersebut memiliki pendidikan Teknik Kimia sampai S2 atau bahkan S3. Oleh karena itu, sang Sarjana Teknik Kimia haruslah mengambil studi lanjut ke S2 atau S3 sebelum memutuskan ingin menjadi dosen. Jikalau kalian memiliki passion mengembangkan ilmu pengetahuan & teknologi dan senang mengajar & mendidik calon-calon generasi Indonesia masa mendatang, pekerjaan ini merupakan pekerjaan yang menarik dan sangat mulia. Indonesia sangat membutuhkan tenaga-tenaga pengajar ahli yang pakar di berbagai bidang Teknik Kimia yang begitu luas demi membangun ekonomi bangsa ini di masa depan. Tentunya pendidikan akan menjadi fondasi yang sangat kuat bagi bangsa ini untuk berkembang dalam iptek-nya.
Demikianlah pembahasan 7 peluang pekerjaan lainnya bagi lulusan Teknik Kimia di Indonesia, sekarang waktunya kita memilih mau lulus seperti gambar ini
atau seperti ini
atau juga seperti ini


Sumber
- http://majarimagazine.com/2011/09/peluang-pekerjaan-lainnya-bagi-sarjana-teknik-kimia-di-indonesia/
- http://lpmp-gorontalo.blogspot.com/2011/07/apa-yang-salah-dengan-pendidikan-tinggi.html
- st288287.sitekno.com
- http://metatak.blogspot.com/2011/09/wujud-asli-sailor-mercury-nih-gan.html